Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Hanrong.
dc.description.abstractThe ability to inactivate gene function has contributed to functional genetics studies. Current techniques of gene knockout using Cre-loxP recombination and RNAi have achieved varying degrees of success despite certain limitations. To overcome these limitations, we initiated the development of a new strategy to achieve inducible and reversible gene knockout. The strategy requires two components, a tetracycline inducible repressor (TetR-kid) and a repressor binding sequence (ΔTRE). TetR-kid was obtained by coupling the Tetracycline repressor protein (TetR) to the Kid1 protein. ΔTRE is a modified tetracycline response element (TRE). Here, a Rosa26 targeting vector was constructed in efforts of developing this strategy. The vector was designed to introduce the TetR-kid transgene into the Rosa26 genetic locus to achieve ubiquitous and uniform expression of TetR-kid. The vector was obtained by modifying a BAC containing the locus. By recombineering, the TetR-kid transgene along with an ACN cassette for positive selection was introduced into the locus followed by a second recombineering step to retrieve the modified BAC fragment into a vector that contains a negative selection marker, a diphtheria toxin fragment a (DTA) gene. This targeting vector would be used for gene targeting in ES cells in efforts to generate TetRkid knock-in mouse.en_US
dc.format.extent29 p.en_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Science::Biological sciences::Molecular biologyen_US
dc.titleDevelopment of a new strategy for inducible and reversible gene knockout.en_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorKlaus Erik Karjalainenen_US
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.description.degreeBachelor of Science in Biological Sciencesen_US
item.fulltextWith Fulltext-
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
  Restricted Access
2.06 MBAdobe PDFView/Open

Page view(s) 50

checked on Oct 20, 2020

Download(s) 50

checked on Oct 20, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.