Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/53945
Title: Design of a morphing airfoil
Authors: Varsha Ravichandran
Keywords: DRNTU::Engineering
Issue Date: 2013
Abstract: In this continued study, macro fibre composite actuators are used to change the upper and lower surfaces of the air-foil model with a geometry closely resembling NACA0014. These thin and light piezoelectric actuators are bonded to the inside skin of the upper and lower surfaces and become an integral part of it. In order to assess its characteristics of the static and dynamic changes of the airfoil, it is tested in still air and wind tunnel measurements in flow regimes of Reynolds number 150,000. The results obtained can be used to design a wing with morphing surfaces for improving its aerodynamics, for manoeuvring without ailerons, and/or for active control of the flow over the wing. This model is a complete development of the previously studied model and takes into account the scope for improvement from past models. This report also presents CFD (Computational Fluid Analysis) results on specific models taken at specific flow condition to check if the results match with the wind tunnel measurements. The overall results obtained from wind tunnel testing with the flow field simulated from CFD analysis indicate a significant increase in lift and drag characteristics with the implementation of morphing techniques, without any unnecessary vibrations.
URI: http://hdl.handle.net/10356/53945
Schools: School of Mechanical and Aerospace Engineering 
Research Centres: Temasek Laboratories 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
MAE_FYP REPORT_U0920561E.pdf
  Restricted Access
Main Article3.54 MBAdobe PDFView/Open

Page view(s)

476
Updated on May 7, 2025

Download(s) 50

27
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.