Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/54698
Title: Molecular mechanisms underlying the neuroprotective effect of IGF-1 in neuroblastoma cells and the pro-metastatic effect of Dph3 in murine melanoma cells
Authors: Wang, Lei
Keywords: DRNTU::Science::Biological sciences::Molecular biology
Issue Date: 2013
Source: Wang, L. (2013). Molecular mechanisms underlying the neuroprotective effect of IGF-1 in neuroblastoma cells and the pro-metastatic effect of Dph3 in murine melanoma cells. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Parkinson’s disease (PD) is mainly caused by the lost of dopaminergic neurons located in the substantia nigra pars compacta (SNpc). Thus, preventing the death of dopaminergic neurons is thought to be a potential strategy to interfere with the development of PD. The involvement of IGF-1 signaling pathways in neuronal cell survival has been identified in many cell types, but its downstream targets are frequently cell type-specific. In the present work, we studied the effect of IGF-1 on MPP+-induced apoptosis in human dopaminergic neuroblastoma SH-EP1 cells. We found that IGF-1 effectively protects SH-EP1 cells against MPP+-induced apoptotic cell death. We further delineated the underlying molecular mechanism and showed the PI3K/AKT pathway plays a central role in IGF-mediated cell survival against MPP+ neurotoxicity, not the mitogen-activated protein kinase (MAPK)/ERK pathway. Moreover, we demonstrated that the protective effect of AKT is largely dependent on the inactivation of glycogen synthase kinase 3β (GSK-3β), since inhibition of GSK-3β by its inhibitor, BIO, could mimic the protective effect of IGF-1 on MPP+-induced cell death in SH-EP1 cells. Interestingly, the IGF-1 potentiated PI3K/AKT activity is found to negatively regulate the c-Jun N-terminal protein kinase (JNK) related apoptotic pathway and this negative regulation is further shown to be mediated by AKT-dependent GSK-3β inactivation. Thus, our findings may provide a better understanding of the neuroprotective mechanism of IGF-1 on dopaminergic neuronal cell death and could hold tremendous implication for the development of therapy to arrest the progression of PD in the future.
URI: https://hdl.handle.net/10356/54698
DOI: 10.32657/10356/54698
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Theses

Files in This Item:
File Description SizeFormat 
TbsG0803162G.pdfPhD Thesis2.08 MBAdobe PDFThumbnail
View/Open

Page view(s)

337
Updated on Mar 3, 2021

Download(s)

159
Updated on Mar 3, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.