Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/54830
Title: Bayesian quantile regression for semiparametric models
Authors: Hu, Yuao
Keywords: DRNTU::Science::Mathematics::Statistics
Issue Date: 2013
Source: Hu, Y. (2013). Bayesian quantile regression for semiparametric models. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Quantile regression has recently received a great deal of attention in both theoretical and empirical research. It can uncover different structural relationships between covariates and responses at the upper or lower tails, which is sometimes of significant interest in econometrics, educational and medicine applications. The methodologies of quantile regression for linear models have been well developed in both frequentist and Bayesian contexts. However, there has been relatively less work focusing on quantile regression for nonparametric models or semiparametric models, especially from a Bayesian perspective. The principal goal of this work is to propose efficient approaches to implement Bayesian quantile regression with two kinds of semiparametric modes, single-index models and partially linear additive models, using an asymmetric Laplace distribution which provides a mechanism for Bayesian inference of quantile regression. With carefully selected priors, we build hierarchical Bayesian models and design effective Markov chain Monte Carlo algorithms for posterior inference. We compare the proposed methods with some existing methods through simulation studies and real data applications.
URI: https://hdl.handle.net/10356/54830
DOI: 10.32657/10356/54830
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
HuYuao2013.pdf4.46 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.