Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/55122
Title: Intelligent control system design to suppress vibration in civil structure
Authors: Ng, Jin Bao.
Keywords: DRNTU::Engineering
Issue Date: 2012
Abstract: In this project, an intelligent control system for the vibration suppression of linear base-isolated buildings excited by unknown earthquake disturbance will be presented. Using PID theory, we can show how a PID controller manipulates its gains to suppress the motion of the structure caused by the unexpected earthquake disturbances. Following the PID control law of the linear parameters of the gains, we need to achieve a stable tuning on the PID controller for it to operate independently without external input at real times. The performance of the PID controller is evaluated on a full-fledged superstructure. Additional theories on nonlinear controller used on the interaction of the nonlinear base-isolated buildings will be elaborated too. Although PID controller does not give the best expected result to suppress the vibration of the earthquakes, it is one of the easiest controllers to study before proceeding to study on nonlinear controllers. Finally, the performance between the PID controller and one of the nonlinear controllers, namely the adaptive controller, will be compared. Nevertheless, the proposed adaptive controller is much better in controlling the vibration in the isolation layer for typical types of near-fault earthquakes even without compromising the base displacement or increasing the superstructure responses.
URI: http://hdl.handle.net/10356/55122
Schools: School of Electrical and Electronic Engineering 
Research Centres: Centre for Modelling and Control of Complex Systems 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Report.pdf
  Restricted Access
Experiment data readings5.29 MBAdobe PDFView/Open

Page view(s)

333
Updated on May 7, 2025

Download(s)

9
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.