Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/58102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Zhengyangen_US
dc.date.accessioned2014-04-07T12:14:38Z-
dc.date.available2014-04-07T12:14:38Z-
dc.date.copyright2011en_US
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/10356/58102-
dc.description58 p.en_US
dc.description.abstractSpiking neural network has been believed to be the third generation of artificial neural network. It is a more precise model to describe the real biology neural network and is more powerful than the traditional neural network.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen_US
dc.titleSurge in SpikeProp algorithmen_US
dc.typeThesisen_US
dc.contributor.supervisorSong Qingen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeMaster of Science (Computer Control and Automation)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
EEE THESES_39.pdf
  Restricted Access
6.79 MBAdobe PDFView/Open

Page view(s)

340
Updated on Sep 15, 2024

Download(s)

5
Updated on Sep 15, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.