View Item 
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Durability of woven composite structures

      Thumbnail
      View/Open
      SATRIO WICAKSONO PHD FINAL THESIS.pdf (3.329Mb)
      Author
      Satrio Wicaksono
      Date of Issue
      2014
      School
      School of Mechanical and Aerospace Engineering
      Related Organization
      Defence Science Organisation
      Abstract
      The current study focuses on the durability of the composite structures, especially structures that are made of woven carbon-epoxy. The fatigue behaviour of woven composite structures is different from the fatigue behaviour of structures made of unidirectional (UD) and multidirectional (MD) composites. The fatigue behaviour of woven composites is much more complex then UD and MD composites because the interaction between warp and fill zone need to be taken into account. Thus, a thorough study on fatigue behaviour of woven composites is very important and much needed at this present time. Material characterization has been done on L-930 flame retardant woven carbon-epoxy using accelerated testing methodology proposed by Miyano. The material characterization includes: determining the time-temperature shift factor, storage modulus master curve, constant strain rate (CSR) strength master curve, zero stress ratio fatigue strength master curve and fatigue strength at arbitrary load ratio, temperature and frequency for both tensile and shear properties. Several essential tests were performed to fully characterize a composite material: DMA test, constant strain rate (CSR) test at several different temperatures and zero stress ratio fatigue test at several different temperatures. There are evidences showing that accelerated testing methodology cannot be used to predict the shear fatigue strength at arbitrary load ratio but can be used to predict the shear fatigue strength at arbitrary temperature and zero load ratio. It was also found that modulus decay is linear over the log of number of cycles from the beginning until the end of fatigue life and the rate of modulus decay increases as the stress increases. Finite element modelling and analysis were then carried out to predict the static strength and fatigue life of an I-beam structure using the material characterization parameters obtained earlier. A new "stiffness decay model" is introduced. The new model is based on maximum stress and modified Hashin criteria and was implemented in the USDFLD subroutines in conjunction with the finite element models. The static strength and fatigue life of an I-beam composite as well as stiffness decay were predicted and their results agreed very well with the experimental results.
      Subject
      DRNTU::Engineering::Aeronautical engineering::Materials of construction
      Type
      Thesis
      Collections
      • Theses and Dissertations

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG