Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/60836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLim, Carol Yi Ting
dc.date.accessioned2014-06-02T02:53:34Z
dc.date.available2014-06-02T02:53:34Z
dc.date.copyright2014en_US
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10356/60836
dc.description.abstractSynthetic small interfering RNAs have generated large interest in both basic and applied biology due to their ability to knock down and silence the gene of interest. At the same time it also serves as a requisite tool to study genetic function in cells. To date, very little literature has been found which comprehensively incorporating siRNAs into all 16 logic gates hence the author aim to fill in this gap of information by introducing a new molecular mechanism to construct the siRNA based logic circuits. With this new molecular mechanism one can easily transpose 8 logic circuits to full 16 logic circuits as siRNA serves as a NOT gate and is also a strong repressor which has the ability to silent a particular gene in the circuit. The output of the logic circuit would also be much cleaner and more informative without any unwanted noise as siRNA control the translation level. The use of bioinformatic tools help to calculate the binding energy of the siRNA which gives a theoretical basis to evaluate the output efficiency of logic gates before doing the actual experiment. Additionally, mathematical modelling was done and the predicted responses of mathematical models were achieved. The results proved that not only siRNA has the ability to function in all 16 logic gates but also it was through mathematical modelling, it aid in the understanding of the designed siRNA based logic circuit so that fine tuning could be done when necessary.en_US
dc.format.extent101 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Bioengineeringen_US
dc.titleEngineering logic gates using synthetic SIRNAs in escherichia coli for gene silencingen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.description.degreeBachelor of Engineering (Chemical and Biomolecular Engineering)en_US
dc.contributor.supervisor2Song Haoen_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
ENGINEERING LOGIC GATES USING SYNTHETIC SIRNAs IN ESCHERICHIACOLI FOR GENE SILENCING.pdf
  Restricted Access
1.84 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.