Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/61108
Title: | Flood modelling studies : unsteady flow analysis with HEC-RAS | Authors: | Teo, He Bei | Keywords: | DRNTU::Engineering::Civil engineering::Water resources | Issue Date: | 2014 | Abstract: | HEC-RAS is a River Analysis System developed by the U.S. Army Corps of Engineers that allows the performance of one-dimensional hydraulic calculations for a full network of natural and constructed channels for steady and unsteady flow. An on-going flood modelling studies by the Institute of Catastrophe Risk Management (ICRM) at Nanyang Technological University (NTU) aims to develop a fully integrated flood simulation and damage/loss assessment model through the use of a variety of software, including HEC-RAS. In-depth exploration of the parameters necessary to set up unsteady flow analysis in HEC-RAS can greatly boost the development of this flood simulation mode which currently uses steady state simulation by HEC-RAS. The objective of this project is to define the key parameters relevant to unsteady flow simulation in HEC-RAS and quantify the effects of these parameters. The unsteady flow simulations were benchmarked to the recent 2007 flood event in Jakarta, Indonesia, focusing on the Ciliwung River. Permutations of input parameters were used for unsteady flow simulation and the results were evaluated and compared against that from the steady flow analysis of HEC-RAS. Before execution, it was hypothesised that unsteady flow simulation will yield results comparable to steady flow simulations but with the additional function of time (i.e. duration of flood stage). | URI: | http://hdl.handle.net/10356/61108 | Schools: | School of Civil and Environmental Engineering | Rights: | Nanyang Technological University | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | CEE Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FYP115MAY-final.pdf Restricted Access | 1.16 MB | Adobe PDF | View/Open |
Page view(s) 50
534
Updated on May 7, 2025
Download(s) 50
24
Updated on May 7, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.