Please use this identifier to cite or link to this item:
Title: Action recognition in videos
Authors: Dai, Peilun
Keywords: DRNTU::Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Issue Date: 2014
Publisher: Nanyang Technological University
Abstract: Human action recognition in videos is becoming more and more popular in applications such as intelligent surveillance, automatic video annotation and multimedia information retrieval. In this report, an action recognition algorithm based on supervoxel segmentation and bag-of-words representation will be introduced. The algorithms first segments the videos in supervoxels, and then extracts several types of visual features from the supervoxels. These extracted supervoxels features are then clustered to get a codebook to code bag-of-words representation of each video. Finally, the bag-of-words representation are trained with machine learning classifiers such as support vector machines with kernel methods such as linear kernel and chi-square kernel to classify human actions in new videos.
Rights: Nanyang Technological University
Fulltext Permission: embargo_restricted_20220731
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Until 2022-07-31
Main article of FYP report1.98 MBAdobe PDFUnder embargo until Jul 31, 2022

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.