Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/61349
Title: Numerical analysis of some multiscale and stochastic partial differential equations
Authors: Xia, Bing Xing
Keywords: DRNTU::Science::Mathematics
Issue Date: 2013
Source: Xia, B. X. (2013). Numerical analysis of some multiscale and stochastic partial differential equations. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Multiscale partial differential equations (PDEs) and stochastic PDEs arise from many technological and engineering situations, such as composite materials, ground water flow and oil recovery. For multiscale PDEs, as the scales differ from each other by several orders of magnitude, classical finite element (FE) methods are prohibitively expensive as the mesh width has to be of the order of the smallest scale for the approximating solution to represent correctly the exact solution of the multiscale equation. For stochastic PDEs, the cost of computing the statistical properties of the solution is high. The complexity of these problems may surpass the current available computing power. Studying new computational and approximation methods that can solve these problems within acceptable computational time, using reasonable computational resources without sacrificing accuracy is one of the central topics in applied mathematics today. This thesis aims to make novel contributions to this timely scientific challenge. We study novel computational methods for multiscale wave equations, multiscale elasticity equations and multiscale elastic wave equations. We also devote a part of this thesis to studying approximation for random and parametric elasticity equations.
URI: https://hdl.handle.net/10356/61349
DOI: 10.32657/10356/61349
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
Main_thesis.pdfMain Thesis1.35 MBAdobe PDFThumbnail
View/Open

Page view(s) 20

346
checked on Oct 26, 2020

Download(s) 20

204
checked on Oct 26, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.