Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/61419
Title: Next generation optical based touch interface II
Authors: Thirunavukkarasu, Nivetha
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Issue Date: 2014
Abstract: The core aim of the project is to develop a system that can serve as a next-generation for human-machine interaction and convert everyday objects starting from an ordinary glass panel into a touch screen using simple sensors and cameras. As interactive screens get bigger, the system becomes more costly. The project helps in developing a cost-effective touch sensing system that can be expanded to any size and lighting conditions and utilizes the power of mathematics and programming to improve the functionality of the system than by adding any overhead hardware costs.As the ability to detect simultaneously two or more touches has become a large requirement, the project aims at achieving this multi-touch in an effective manner. The implementation aims at developing an algorithm that can better the calibration process, increasing the speed, efficiency and intuitiveness of the technology. Secondly, the system is also being developed to function well under different lighting conditions and especially in scenarios like low-lighting where simply adjusting camera settings might not suffice. The project was divided into 2 phases namely the research& academic phase, where the various multi-touch technologies that were deployed in other models of touch interfaces, such as capacitive, resistive and LED-based optical touch sensors, were explored. This helped me understanding as to what could be the possible ways to implement an efficient multi-touch technology for our present system. Alongside I was also researching on the different environment setting values that need to be adjusted to make a system function under different environmental conditions. The second phase was the implementation was the different theories were understood and applied appropriately to make it suitable for our present implementation.
URI: http://hdl.handle.net/10356/61419
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
ThirunavukkarasuNivetha_FYP_Report.pdf
  Restricted Access
Final Year Project Report2.04 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.