Please use this identifier to cite or link to this item:
Title: Investigation of the energy conversion efficiency of shape memory alloys
Authors: Lewis, Kingsley Earle
Keywords: DRNTU::Engineering
Issue Date: 2014
Abstract: This project investigated the energy conversion efficiency of one way shape memory alloys (SMA). Energy conversion works by converting low grade thermal energy to mechanical energy, hence providing alternative sources of energy, useful to mankind. SMA energy conversion is however limited by its efficiency, hence prompting the need for accurate determination of the efficiency. The effects of pre-strain, constrained stress and heating rate on experimental efficiency were examined while the effects of constrained stress and recovery strain on theoretical efficiency were examined. The SMA wires underwent annealing followed by calorimetry to determine the transformation temperatures. Two types of deformation procedures were then used, namely fixed pre-strain with different constrained stresses and fixed constrained stress with changing pre-strains. Upon being loaded with the pre-strain, they were unloaded and reloaded with the constrained stress. Once the constrained stress was reached, the SMA wire was heated and the recovery strain was evaluated for efficiency calculations. Experimental efficiencies of 0.017- 0.102% were obtained compared to that of 1.11- 4.41% obtained theoretically. Experimental results suggested that efficiency increased with increasing pre-strain, constrained stress and the heating rate. However, at 13% pre-strain, the experimental efficiency reduced across all constrained stresses. Theoretical efficiencies showed increasing trend with increasing constrained stress and recovery strain. The following experimental and theoretical results will provide deep understanding of the energy conversion efficiency of NiTi SMA wire.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
fyp editedfinal3005.pdf
  Restricted Access
Main article2.26 MBAdobe PDFView/Open

Page view(s) 20

checked on Oct 28, 2020

Download(s) 20

checked on Oct 28, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.