Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/61536
Title: 3D printing assisted conceptual design of biodegradable PLA surgical staple with self-tightening function
Authors: Yeo, Eugene Jun Hao
Keywords: DRNTU::Engineering
Issue Date: 2014
Abstract: Shape memory materials (SMMs) are materials that possess the ability of recovering to its original shape from a seemingly plastic deformation when a particular stimulus is applied. This unique property of SMM is termed as shape memory effect (SME). This exclusive SME property can be used widely in many fields of work, namely biomedical field that is of relevance to the report. The material of primary concern is polylactic acid (PLA). PLA is an aliphatic polyester, and belongs to the category of shape memory polymer (SMP) that is actually one of the five main sub class of SMM. PLA has attracted attention increasingly in the recent years due to its SME, excellent mechanical properties, outstanding biocompatibility and biodegradability. It can degrade in the body into non-harmful and non-toxic compounds over time, which is a highly sought after trait in any biomedical tools. By utilising the SME present in PLA, the report focuses on designing a surgical staple that is capable of closing internal lacerations in the human body. The design is based on PLA’s SME such that the typical process of stapling can be done without using the crimp base area of the stapler. Doing so would allow the staple to be used in minimally invasive internal surgery for closing of wounds. The report studies the properties of SME in PLA and SMP as a whole and addresses the limitations of using PLA as a surgical staple. Designing and fabrication of the surgical staple along with the testing and simulation of application of the staples ensues. The final section concludes the project and reveals possible exploration of future works of PLA in the biomedical field.
URI: http://hdl.handle.net/10356/61536
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Submmited copy FYP.pdf
  Restricted Access
18.7 MBAdobe PDFView/Open

Page view(s) 50

291
checked on Oct 19, 2020

Download(s) 50

12
checked on Oct 19, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.