Please use this identifier to cite or link to this item:
Title: Development of the nodal based discontinuous deformation analysis and its engineering applications
Authors: Tian, Qian
Keywords: DRNTU::Engineering::Civil engineering::Geotechnical
Issue Date: 2014
Source: Tian, Q. (2014). Development of the nodal based discontinuous deformation analysis and its engineering applications. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Discontinuous Deformation Analysis (DDA) and Finite Element Method (FEM) belong to two different numerical approaches, the discontinuum-based method and the continuous-based method. The Nodal-based Discontinuous Deformation Analysis (NDDA) introduced in this thesis is a coupled method of DDA and FEM. By incorporating the finite element mesh into the discrete block, the unique block kinematics of the DDA is inherited and the stress field within the block is refined. To make the NDDA method a more powerful tool in the rock engineering analysis, a “crack propagation procedure” is implemented into the NDDA program to describe the failure process in a fully automatic way. Also, the rockbolt element is implemented in the NDDA framework to numerically simulated the rock/bolt interaction when the rock mass is reinforced by rockbolts. An alternative contact mechanism, the Augmented Lagrangian Method (ALM) is introduced into the standard DDA method, and the efficiency and the accuracy of the method are discussed. Finally, the potential use of the new method is demonstrated through the slope sliding and topping analysis.
DOI: 10.32657/10356/61605
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Theses

Files in This Item:
File Description SizeFormat 
Thesis .pdfmain article8.18 MBAdobe PDFThumbnail

Page view(s) 20

Updated on Jun 11, 2021

Download(s) 20

Updated on Jun 11, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.