Please use this identifier to cite or link to this item:
Title: In network processing for tectonic monitoring
Authors: Tran, Hoang Ha
Keywords: DRNTU::Engineering::Computer science and engineering::Computer systems organization::Computer-communication networks
Issue Date: 2014
Source: Tran, H. H. (2014). In network processing for tectonic monitoring. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: The wireless mesh network connection between GPS stations empowers them with the ability to share information and adjustments with each other in real-time. The main fo-cus of this research is to utilize wireless mesh network with three main directions 1) com-munication bandwidth reduction, 2) real-time event detection and 3) in-network GPS data processing. Wireless mesh networking (WMN) is proposed to reduce the number of satellite links and bandwidth required for transmission of GPS data. WMN can be established using long range radios. Clusters of GPS stations will then be formed and a cluster-head is selected for each cluster. Each cluster-head will have satellite communication capabilities and will be responsible for collecting and compressing all the observation data from the GPS stations within the cluster and transmitting them to the remote centralized data server. This greatly reduces the number of satellite upload links needed when each cluster requires a minimum of only one satellite upload link. Furthermore, the cluster based GPS data compression could reduce 70% of daily upload data in our experiment. In-situ parallel and distributed processing of GPS corrections can be made possible using mesh networking. The observation data from adjacent GPS stations are grouped together and processed in hierarchy fashion. Compared to conventional sequential processing method, the computational complexity and computation time of parallel and distributed GPS processing with various schemes decrease significantly. By sharing data within the mesh network, it is possible for in-network processing to be performed for GPS corrections using the embedded processing capability at each GPS station. This allows early-warning applications to be developed without the need for costly data transmission to a remote centralized server. Moreover, event detection algorithm using single station may fail to identify events that are caused by noisy data or human made events. The collabora-tion GPS processing to have better detect seismic events could possibly be implemented by mesh network connections. This thesis summarizes our work on the research topic of in network processing for tectonic monitoring. It investigates the use of mesh network connections between stations to able in-network processing.
DOI: 10.32657/10356/61653
Schools: School of Computer Engineering 
Research Centres: Emerging Research Lab
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
PhDThesis-9.0.pdf5.3 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Jun 18, 2024

Download(s) 20

Updated on Jun 18, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.