Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/61865
Title: Vision based control of multi-robot system
Authors: Oh, Matthew Han Xiong
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Robotics
Issue Date: 2014
Abstract: In recent years, technology has evolved so rapidly that systems are becoming more and more complex. In particular, in the field of control robotics, a single control robot may no longer be able to fulfil the requirements of a complex task. This led to increase development in the area of formation control of network multi-robot system.This project presents different formation controllers for a multi-robot system. In order to test out different formation controllers, a testbed was designed. Mobile robots with in-build communications capabilities were also used for this purpose. To allow scalability for the system, communication limitations in large network multi-robots system were addressed. The result is a distributed formation controller.The distributed formation controller is actually a superset of all other controllers. It consists of an estimator which construct the desired reference for each robot based on information exchange by neighbouring robots. It also consists of a region based control for trajectory tracking which includes relative velocity estimation.However, one major downside of the testbed includes undesirable computation speed of the microcontroller. In order to overcome this issue, actual computations are emulated in the central processing system before transferring to the mobile robots.To employ a more effective system, it is recommended to use holonomic drive for more effective steering and communication platform that allows inter-communication between robots.In conclusion, for future development of large scaled multi-robot control, mobile vision-based multi-robot system can be incorporated for effective positioning. It is also strongly recommended to have a robust system with small number of robots before proceeding in scaling up.
URI: http://hdl.handle.net/10356/61865
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_FINAL_REPORT_A4230-132_MATTHEW_OH_HAN_XIONG.pdf
  Restricted Access
9.86 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.