View Item 
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Designing localized algorithms for large‐scale wireless sensor networks : a geometric perspective

      Thumbnail
      View/Open
      thesis.pdf (10.28Mb)
      Author
      Li, Feng
      Date of Issue
      2014
      School
      School of Computer Engineering
      Research Centre
      Centre for Multimedia and Network Technology
      Abstract
      Wireless Sensor Networks (WSNs) provide the service of monitoring and sensing physical environment. With the pervasive applications of WSNs in various fields, the increasing network scale brings considerable challenges in many aspects, from high-level applications to low-level networking and communication. In this thesis, we try to understand large-scale WSNs from geometric perspective. In particular, by exploiting the multi-fold geometric properties of WSNs (e.g., sensor nodes' locations and connectivity as well as their unique sensing/communicating models), we can build geometric models and apply geometric algorithms to address perplexing problems of large-scale WSNs. In contrast to typical geometric techniques which require global information as input, we design localized algorithms which can be performed by individual sensor nodes in a distributed manner using only locally available information, to benefit large-scale WSNs in terms of time cost, system adaptivity and robustness, energy efficiency, as well as network performance. In many applications, a large-scale WSN is deployed to monitor and survey time-variant events, which demands a fast boundary detection technique. Considering sensor nodes may be deployed in a 3D volume, the first focus of this thesis is boundary detection for large-scale 3D WSNs. We model a 3D WSN as point cloud sampled from a hypothetic 3D volume. Borrowing the idea of direct visibility, we present an on-line boundary detection algorithm to identify the sensor nodes on the boundary surfaces of the 3D volume using only local position information. Additionally, we propose a localized parametrization algorithm to regulate the detected arbitrarily shaped network boundaries into spheres, thereby supporting other network functionalities, e.g., distinguishing internal boundaries from the external one, and geographic routing. We evaluate our strategies of boundary detection and regulation with extensive implementations and simulations.
      Subject
      DRNTU::Engineering::Computer science and engineering::Computer systems organization::Computer-communication networks
      Type
      Thesis
      Collections
      • Theses and Dissertations

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG