Please use this identifier to cite or link to this item:
Title: First-principles calculations of the novel properties of two-dimensional materials
Authors: Yan, Jiaxu
Keywords: DRNTU::Science::Physics::Atomic physics::Solid state physics
Issue Date: 2014
Source: Yan, J. (2014). First-principles calculations of the novel properties of two-dimensional materials. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Two-dimensional (2D) materials such as graphene have inspired a worldwide upsurge of research interests since 2004 when graphene were firstly obtained by Andre Geim using mechanical exfoliation from highly oriented pyrolytic graphite. In spite of the excellent carrier mobility of graphene, the lack of a band gap impedes its applications in areas like nanoelectronics and solar cell. Although various methods have been developed to realize the band gap opening, the resulting structures are accompanied by adverse side effects, such as dramatically increased effective mass, distorted lattice, and/or damaged layer integrity, resulting in the loss of majority of its superior properties. Parallel to the intensive world-wide effort to engineer the band structure of graphene, scientists start to study other 2D materials beyond graphene. For example, molybdenum oxide and molybdenum sulfide, which possesses the layered structure as graphene, can be viewed as the potential candidates. Inspired by graphene, such 2D materials beyond graphene now have drawn more attention for its electrical and optical properties.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
Thesis for YJX.pdf15.79 MBAdobe PDFThumbnail

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.