Please use this identifier to cite or link to this item:
Title: All-atom molecular dynamics simulation with levels of polarization
Authors: Sun, Tiedong
Keywords: DRNTU::Science::Chemistry::Physical chemistry::Thermodynamics
Issue Date: 2015
Abstract: Molecular dynamics (MD) simulation has become an indispensable tool in computational chemistry. It is believed that, to produce reliable results, polarization effect must be included in MD simulation. In this thesis, several studies with MD simulation is conducted with different levels of polarization. First, conventional molecular dynamics simulation without polarization is performed to study interactions between graphene and biomolecules. Interesting results are presented, but more fascinating phenomenon and properties cannot be explored with methods at this level. Then protein molecular dynamics simulations are performed with models representing two levels of polarization, namely fluctuating backbone charge and polarized protein-specific charge updating. The results showed that the newly developed polarized protein-specific charge updating scheme, named ERPPC was promising in several perspectives. It incorporates polarization into MD simulation by varying atomic charges periodically. Simulations show that ERPPC reproduced loop dynamics of enzyme YopH. At the same time, it only consumes about 2.5 times computing time of classical molecular dynamics simulation. Further development is expected on ERPPC to improve both accuracy and efficiency.
DOI: 10.32657/10356/62216
Schools: School of Physical and Mathematical Sciences 
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
thesis_SunTiedong_G1002301F.pdfmain article of thesis by Sun Tiedong (G1002301F)14.33 MBAdobe PDFThumbnail

Page view(s) 10

Updated on Jul 17, 2024

Download(s) 5

Updated on Jul 17, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.