Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/62492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChua, Hao Zi
dc.date.accessioned2015-04-09T03:11:30Z
dc.date.available2015-04-09T03:11:30Z
dc.date.copyright2015en_US
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10356/62492
dc.description.abstractDiabetes is a widely known illness that strikes many with a low chance of full recovery. And most commercial glucose sensors are used to monitor diabetes in patients, and many are enzymatic. As such, this report investigates the possibility of using non-enzymatic glucose sensors for early detection of abnormal blood glucose level, and this is done by analysing the catalytic activity of Zinc Oxide (ZnO) nanowires that would be embedded in the sensor. Aqueous Chemical Growth (ACG), or known as solution phase synthesis, is carried out to fabricate high quality ZnO nanowires from Hexamethylenetetramine, i.e. HMTA (C6H12N4), and Zinc Nitrate Hexahydrate, i.e. [Zn(NO3)2  6H2O]. Scanning Electron Microscope (SEM) and X-Ray Diffractometer (XRD) is then used to analyse the crystal growth and morphology of the nanowires. Cyclic Voltammetry (CV) is lastly used to investigate the rate of glucose oxidation under different parameters. This is reflected by the intensity of the current signal for the glucose oxidation peaks, which is function of the catalytic activity of ZnO nanowires. Results show that by using ZnO nanowires, it is able to detect the variations in blood glucose concentrations, making it possible to detect abnormal blood glucose level early and prevent diabetes. Also, slight variations that are possible in human body do not affect the function of ZnO adversely. A more crystalline form of ZnO nanowires can be obtained with an additional annealing at a temperature of 200oC, allowing them to better serve their functions. In conclusion, these results show great possibility for ZnO nanowires to serve as catalyst in the non-enzymatic glucose sensing. Subsequent work can include investigating the stability of ZnO nanowires in the long run where frequent use of sensor is present or experimenting the possibility of the usage of ZnO nanowires in other applications like food testing or fuel cells.en_US
dc.format.extent49 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Materialsen_US
dc.titleCatalytic activities of nanowiresen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorHuang Yizhongen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.description.degreeBachelor of Engineering (Materials Engineering)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
FYP Report.pdf
  Restricted Access
1.62 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.