Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/62523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhuo, Zhangen
dc.date.accessioned2015-04-14T06:44:17Zen
dc.date.available2015-04-14T06:44:17Zen
dc.date.copyright2015en
dc.date.issued2015en
dc.identifier.citationZhuo, Z. (2015). Biomedical imaging informatics in ocular disease diagnosis. Doctoral thesis, Nanyang Technological University, Singapore.en
dc.identifier.urihttps://hdl.handle.net/10356/62523en
dc.description.abstractComputer aided diagnosis (CAD) system allows cost effective and prompt disease diagnosis, which has both clinical and social significance. Current ocular CAD systems typically account for only one type of data, e.g. medical image which may yield suboptimal accuracy as the training data itself lack the complete aspects for decision making. A new challenge in CAD research is to integrate the distinct attributes of clinical research that are provided by different types of biomedical data. By combining heterogeneous data sources, a CAD system would integrate the complementary pieces of information and provide a more holistic appreciation of the multiple risk factors, thus improves disease detection accuracy. This PhD study aims to fill in the blank by proposing an innovative system AODI (Automatic Ocular Disease Diagnosis through Biomedical Imaging Informatics), which focuses on CAD for ocular diseases, aiming to boost the diagnosis accuracy through intelligently combining image, SNP (Single-Nucleotide Polymorphism) and clinical data. AODI enables a data-driven approach that takes advantage of ever-growing heterogeneous data sources and improves the performance when more data or additional information becomes available. We investigate the recent advancements in kernel learning and deploy multiple kernel learning (MKL) algorithms for AODI. We conduct experiments to predict major ocular diseases including glaucoma, age-related macula disease (AMD), and pathological myopia (PM), using heterogeneous data sets covering image, SNP and clinical data which are obtained from a holistic population study conducted in Singapore. We also perform comprehensive statistical analysis to validate the improvement in the accuracy of predictions and prove the effectiveness of the proposed framework. To our best knowledge, AODI is the first published work using MKL to integrate multiple kinds of information including image, SNP and clinical data for ocular disease screening/diagnosis. Using MKL, the resulting classifier optimizes the contribution from each sub-kernel through learning an adapted kernel function from each of the heterogeneous feature sets. Such a framework paves a holistic way for automatic and objective disease diagnosis and screening. Moreover, our work on feature selection for SNP data tackles the challenge of SNP selection by innovatively grouping SNPs into functional groups (genes, interacting proteins and biological pathways), and thus explores the biomedical knowledge by sparse learning. Finally, we innovatively incorporates classemes (pre-learned classifiers trained from individual informatics domains) into MKL, and further improves the performance of ocular disease detection.en
dc.format.extent129 p.en
dc.language.isoenen
dc.subjectDRNTU::Engineering::Computer science and engineering::Computer applications::Life and medical sciencesen
dc.titleBiomedical imaging informatics in ocular disease diagnosisen
dc.typeThesisen
dc.contributor.supervisorKwoh Chee Keongen
dc.contributor.schoolSchool of Computer Engineeringen
dc.description.degreeDOCTOR OF PHILOSOPHY (SCE)en
dc.identifier.doi10.32657/10356/62523en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SCSE Theses
Files in This Item:
File Description SizeFormat 
SCE-zhang.zhuo-thesis-2015.pdf3.06 MBAdobe PDFThumbnail
View/Open

Page view(s)

396
Updated on Mar 26, 2024

Download(s) 20

252
Updated on Mar 26, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.