Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/62566
Title: Machine learning methods for Android malware detection
Authors: Xu, Zhengzi
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2015
Abstract: With the Android mobile device becoming increasingly popular, the Android application market has become a main target of the malware attacks. Therefore, many methods have been used to protect the mobile application users from being attacked. However, those methods have shortcomings in detecting the malware within a short time, and can be easily bypassed. To detect the malware before the installed time, and overcome the drawbacks of dynamic analysis and signature based analysis, the machine learning based malware detection methods has been proposed. In this project, I have adopted this approach to develop a tool to extract Android application features, and built the classification model using the generated feature sets. The result shows that classification the model can reach 98% accuracy in predicting the maliciousness of the application. I have also generated the transformation attack samples, which will be used in further machine learning based malware detection studies.
URI: http://hdl.handle.net/10356/62566
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_report_xuzhengzi.pdf
  Restricted Access
1 MBAdobe PDFView/Open

Page view(s) 50

275
Updated on Dec 1, 2020

Download(s) 50

30
Updated on Dec 1, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.