Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/62994
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Wan Jun
dc.date.accessioned2015-05-05T01:43:08Z
dc.date.available2015-05-05T01:43:08Z
dc.date.copyright2015en_US
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10356/62994
dc.description.abstractGlobal warming, affected by the increase in carbon dioxide concentration, is becoming a worrisome trend in the world today due to industrialization and the use of fossil fuels for energy consumption. Hence, an ideal strategy to solve the two problems of global warming and fossil fuel scarcity at once is to remove carbon dioxide concentration by the photocatalytic conversion of carbon dioxide into hydrocarbons as a sustainable source of fuels. In this experiment, zinc oxide, a semiconductor with a high energy gap with high binding energy, was used as a photocatalyst. As amine has high interaction with carbon dioxide, amine functional groups were attached to the surface of zinc oxide to increase the capture of carbon dioxide so that photocatalytic reduction of carbon dioxide could be improved. This experiment aims to create an amine functionalized zinc oxide and find out whether the amine group on zinc oxide can effectively capture CO2 for photocatalytic conversion into hydrocarbon fuels and also to find out the capability in increasing the product yield. FTIR, XRD and photocatalytic reduction of carbon dioxide were used to analyse the different samples of zinc oxide (ZnO) and monoethanolamine-zinc oxide (MEA-ZnO). The samples were indexed to the wurtzite ZnO structure. Even though MEA was successful in attaching onto the surface on the zinc oxide through the hydrothermal reaction at 90°C for 12 hours, very small amount of products were produced. However, it has been found that an increase in concentration of monoethanolamine will result in an increase in production of methane while the production of carbon monoxide were comparable for the different samples. Therefore, efficiency of the photocatalytic reduction of CO2 should be improved and this could be done by adjusting other parameters of the experiment. Parameters like increasing the temperature of autoclave or increasing the MEA concentration or using even stronger light intensities could be changed to find out if the efficiency will be affected.en_US
dc.format.extent32 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Materials::Nanostructured materialsen_US
dc.titleAmine fuctionalized zinc oxide for photocatalytic carbon dioxide reductionen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorXue Canen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.description.degreeBachelor of Engineering (Materials Engineering)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Final FYP Report.pdf
  Restricted Access
1.15 MBAdobe PDFView/Open

Page view(s) 50

441
Updated on Jul 12, 2024

Download(s) 50

20
Updated on Jul 12, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.