Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/64104
Title: Development of polybenzimidazole-based proton exchange membrane for fuel cell applications
Authors: Ong, Guan Jie
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2015
Abstract: The main aim of this project is to synthesize Polybenzimidazole (PBI) and then use the PBI synthesized to develop a proton exchange membrane suited to be used as a membrane electrolyte in High Temperature – Proton Exchange Membrane Fuel Cell (HT-PEMFC) applications. Successful synthesis of PBI was achieved through a polycondensation process and PBI membranes were casted. Membrane characterisation tests such as Fourier Transform Infrared Spectroscopy (FTIR) test, membrane acid uptake, tensile strength test and proton conductivity test were then conducted to determine the chemical composition, mechanical properties and electrochemical properties of the PBI membranes, with references made to the membranes casted from commercially available PBI. Results have shown that the chemical composition of the PBI synthesized were similar to that of commercially available PBI. Another key observation made is that the acid doping level of a PBI membrane is a key parameter in determining the mechanical and electrochemical properties of a PBI membrane. In general, at low acid doping levels, it leads to an increase in both the proton conductivity and the tensile strength of the PBI membrane. However, if the acid doping level is high, it may lead to a deterioration of the PBI membrane’s tensile strength while the proton conductivity of the PBI membrane is further enhanced. A right amount of acid doping level in a PBI membrane must be selected to achieve the optimal performance of a HT-PEMFC.
URI: http://hdl.handle.net/10356/64104
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
A119 (Ong Guan Jie).pdf
  Restricted Access
2.1 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.