Please use this identifier to cite or link to this item:
Title: Modeling and analysis tools for brain study
Authors: Tan, Eileen Yun Rui
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2015
Abstract: Many stress related studies and researches are springing up in attempt to diagnose stress accurately. Although stress is a familiar topic, it however is difficult to capture due to the different markers of stress that individual has. Several researches were done to venture into stress recognition models. These models mostly look at physiological indicators such as heartbeat and blood pressure. There is however little research in developing integrated tool for stress monitoring and recognition through human’s electroencephalogram signals. With the advancement of electroencephalography detection tools, adaptable brain wave sensors have mature, and is increasing becoming affordable equipment. In this project, an experiment was designed and carried out with 9 subjects. The Stroop colour-word test was used as a stressor to induce stress in the subjects. The EEG data are recorded to propose an algorithm for stress monitoring. By using fractal dimension, statistical, and power features, with Support Vector Machine as the classifier, four levels of stress can be recognized with an average accuracy of 60.71 %, three levels of stress can be recognized with an accuracy of 69.82%, and two levels of stress can be recognized with an accuracy of 80.96%. The algorithm is integrated into a user interface CogniMeter for the stress state monitoring.
Schools: School of Electrical and Electronic Engineering 
Research Centres: Fraunhofer Singapore 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP final report (pagination).pdf
  Restricted Access
1.29 MBAdobe PDFView/Open

Page view(s)

Updated on Jun 20, 2024


Updated on Jun 20, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.