Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/64421
Title: Degradation of aqueous recalcitrant compounds by Sulfate radical based advanced oxidation process
Authors: Chau, Yuan Ming
Keywords: DRNTU::Engineering::Civil engineering
Issue Date: 2015
Abstract: Bisphenol A(BPA) is known for its adverse health effects of resulting disorder in human immune system and reproductive system. Despite the assorted proposal of BPA treatment techniques, the limitations of these applications such as the leaching of toxic ions and long reaction time hinder them from being the ideal solution BPA removal process. This study intends to develop a novel heterogeneous catalyst which is capable of decomposing BPA via sulfate radical-based oxidation through triggering peroxymonosulfate(PMS) activation, Three novel heterogeneous Copper-Metal Spinel Oxide catalysts(CuM2O4, M=Al, Bi, Fe) were prepared by sol-gel technique and low temperature co-precipitation method. These catalysts were employed to trigger peroxymonosulfate(PMS) activation and generate free, powerful radicals for degrading Bisphenol A(BPA) in water. The XRD, SEM and FTIR characterization pointed out that CuFe2O4 exhibited itself as the best candidate in term of catalyzing the PMS oxidation rate of BPA. The ascending order of the sequence of catalyst’s reducibility is CuAl2O4 < CuBi2O4 < CuFe2O4.The dependency of the catalytic process on initial pH is revealed in this study, mainly due to the protonation of the peroxide bond in PMS under acidic condition. Moreover, sulfate radicals and hydroxyl radicals were defined as the reactive radical species in PMS/CuM2O4. CuFe2O4/PMS system was optimized by varying oxone dosage and catalytic loading. It was found out that catalytic loading was the dominant factor of the PMS activation rate, signifying the importance of the available effective surface area for the radicals generation to be occurred.
URI: http://hdl.handle.net/10356/64421
Schools: School of Civil and Environmental Engineering 
Research Centres: Nanyang Environment and Water Research Institute 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
full rep.pdf
  Restricted Access
795.21 kBAdobe PDFView/Open

Page view(s) 50

477
Updated on Mar 22, 2025

Download(s) 50

30
Updated on Mar 22, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.