Please use this identifier to cite or link to this item:
Title: Free convection heat transfer along a variable wall temperature vertical cylinder
Authors: Abdul Sufi Noordin
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2015
Abstract: This report serves as a numerical analysis and literature review for free convection heat transfer along a cylinder, which is vertical and possessing a wall temperature, proportional to xn. x is the distance measured from cylinder’s base or its leading edge, and nx is a constant. J.J. Shu and I. Pop were the first to discuss and model the governing equations. Thus, this reports serves as a continuation to their study. Numerous studies with different parameters were conducted to analyze free convection along an upright cylinder, which is isothermal, as well as one, which has a variable surface temperature. However, none presented a direct comparison of the effect of these two different surface conditions. Thus, this paper will present and compare this difference. Firstly, extensive research on previous work in relation with the study were done and analyzed. Following that, a detailed analysis on the numerical solutions was constructed and presented. The numerical computations will be obtained with the implementation of ‘MATLAB’, a multi-paradigm numerical computing environment. Solutions, including the temperature and velocity profile plots, together with the rate of heat transfer plot, will be presented at both the base of the cylinder, which has the stretched stream wise coordinate xi=0, and the asymptotically solution far downstream, where xi → ∞. In addition, the effect of parameters such as n and Prandtl number, Pr, will be studied. Finally, a conclusion will be drawn regarding the significance of these parameters and the relevancy of the governing equation.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP heat transfer on vertical cylinder.pdf
  Restricted Access
Main article21.34 MBAdobe PDFView/Open

Page view(s) 50

checked on Sep 29, 2020

Download(s) 50

checked on Sep 29, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.