Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/64683
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Mei
dc.date.accessioned2015-05-29T06:08:38Z
dc.date.available2015-05-29T06:08:38Z
dc.date.copyright2015en_US
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10356/64683
dc.description.abstractNowadays green energy has become very popular and there has been a lot of research on battery-less technology for many wireless networks and biomedical implants. Harvesting energy from the surrounding environment is a possible way to deal with this problem. Piezoelectric energy harvesting has attracted many research interests. However, in such energy harvesting systems, interface circuits are required between the energy harvester and the output load, so as to supply power management functions. Therefore, this report focuses on interface circuits on voltage rectification and impedance matching for the piezoelectric energy harvester. This report presents the comparison between passive and active AC-DC rectifier, and the design of DC-DC Asynchronous buck-boost converter operating in discontinuous mode [DCM] for emulating maximum load impedance to achieve suboptimal impedance matching. These two circuits are separately implemented in advanced integrated circuit [IC] technology [Global Foundries 0.18um]. The DCM Asynchronous buck-boost converter manages to boost the lower input voltage to a fixed output voltage of 1.76V with the output ripple voltage of 15.6mV at the output capacitor of 1uF and the output resistor of 85k, thus achieving an efficiency of 67.77% with a load current of 21uA.en_US
dc.format.extent61 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Integrated circuitsen_US
dc.titleDesign of a high efficiency and low power rectifier circuitry for piezoelectric generatoren_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorSiek Literen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeBachelor of Engineeringen_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Final Year Report 2015-1.pdf
  Restricted Access
2.24 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.