Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/64862
Title: Evolution of used bamboo chopsticks into supercapacitor electrode materials
Authors: Dong, Bowei
Keywords: DRNTU::Science::Physics
Issue Date: 2015
Abstract: Supercapacitor is a promising candidate for future energy storage development due to its high power density, long life cycle, wide range of operating temperatures, environmental friendliness, and safety. The increasing market growth of hybrid vehicles requires not only improvement on supercapacitor performance, but also cheap, abundant, and sustainable material for supercapacitor fabrication. We herein develop a novel smart strategy to evolve used bamboo chopsticks into useful electrode material for supercapacitor application. This method, involving controllable hydrothermal treatment and calcination of bamboo chopsticks, will on the one hand provide superior electrode material for supercapacitor application, and on the other hand solve the disposal issue by recycling and reusing the precious natural bamboo resources. The hydrothermally treated and calcined bamboo fibers are converted into dispersed carbon fibers with large surface area and numerous mesopores, which is ready to serve as a supercapacitor anode material with capacitance ~ 104 without decay up to 5000 cycles, higher than some commercial activated carbons. To further enhance the performance of the produced electrode material, an array of Ni(OH)2 nano-fibers are constructed firmly outside the produced carbon fibers to form a carbon/Ni(OH)2 hybrid. The carbon/Ni(OH)2 architecture maintains capacitance of ~ 154 (around 1.5 times higher than the previous carbon electrode) up to 1000 cycles. This strategy presents a scalable way to convert bamboo chopsticks wastes into carbon fibers and offers a promising material for low-cost and environmentally friendly supercapacitor and other applications involving high-performance carbon.
URI: http://hdl.handle.net/10356/64862
Schools: School of Physical and Mathematical Sciences 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Dong Bowei_Final Year Project(soft copy).pdf
  Restricted Access
5.79 MBAdobe PDFView/Open

Page view(s) 50

556
Updated on Jun 22, 2024

Download(s) 50

33
Updated on Jun 22, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.