Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/65373
Title: | Efficient algorithms for Bayesian semi-parametric regression models | Authors: | Zhao Kaifeng | Keywords: | DRNTU::Science::Mathematics::Statistics | Issue Date: | 2015 | Source: | Zhao K. (2015). Efficient algorithms for Bayesian semi-parametric regression models. Doctoral thesis, Nanyang Technological University, Singapore. | Abstract: | Semiparametric models have played an increasingly important role in statistical research and received much attention in both frequentist and Bayesian contexts. They are known to be very flexible while overcoming the problem of ‘curse of dimensionality’, and thus find numerous applications in the fields of econometrics, bioinformatics, biomedicine and others. Therefore, it is an interesting but challenging problem to develop semiparametric models for various circumstances with efficient algorithms for statistical inference. In this thesis, we propose Bayesian approaches for two popular classes of semiparametric models, single-index models for Tobit quantile regression and partially linear additive models with automatic and simultaneous model selection and estimation. Based on Markov Chain Monte Carlo method and mean field variational Bayes approximation scheme, we develop efficient algorithms for posterior inferences. Our approaches extend the scope of the applicabilities of the aforementioned semiparametric models from both theoretical and empirical perspectives. With extensive simulation studies, real data examples and comparative works, the proposed approaches are well demonstrated and illustrated. | URI: | http://hdl.handle.net/10356/65373 | Schools: | School of Physical and Mathematical Sciences | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | SPMS Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Thesis-Zhao Kaifeng.pdf Restricted Access | 4.81 MB | Adobe PDF | View/Open |
Page view(s) 50
500
Updated on Mar 23, 2025
Download(s) 50
20
Updated on Mar 23, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.