Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/65936
Title: | Electronic dynamics in low-dimensional materials | Authors: | Deng, Tianqi | Keywords: | DRNTU::Engineering::Materials::Photonics and optoelectronics materials DRNTU::Science::Physics::Atomic physics::Solid state physics DRNTU::Engineering::Materials::Nanostructured materials |
Issue Date: | 2016 | Source: | Deng, T. (2016). Electronic dynamics in low-dimensional materials. Doctoral thesis, Nanyang Technological University, Singapore. | Abstract: | In this work, electronic dynamics in low-dimensional systems are studied. The main objective of this work is to understand the role of electronic structures along confined dimensions in low-dimensional materials. To achieve the goal, graphene saddle point excitons, σ band excitons in graphene multilayer structures, scaling law of many-body interactions in carbon nanotubes and graphene nanoribbons are studied as object systems. This research establishes an analytic model describing the role of electronic structures perpendicular to the quasi-2D material plane, and demonstrating the importance of this role. The finite thickness of electron wave function is found to be key factor in correctly determining the binding of excitons while the inter-layer coupling also plays significant role in layered structures. This quasi-2D nature also leads to a non-hydrogenic exciton spectrum which should be general for all quasi-2D materials. This work also correlates the geometry with scaling behavior of quasi-1D systems. It is demonstrated that the distinct power law behavior between ZCNTs and AGNRs should be attributed to the geometry difference. The results of this research imply that electronic structures along confined dimensions in low-dimensional materials are fundamental to their electronic dynamics including excitonic properties. The models established in this work are potentially applicable in general low-dimensional materials. | URI: | https://hdl.handle.net/10356/65936 | DOI: | 10.32657/10356/65936 | Schools: | School of Materials Science & Engineering | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | MSE Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Thesis.DengTianqi.pdf | Thesis | 3.71 MB | Adobe PDF | ![]() View/Open |
Page view(s) 50
544
Updated on Mar 22, 2025
Download(s) 20
345
Updated on Mar 22, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.