Please use this identifier to cite or link to this item:
Title: Sacrificial gelatin microspheres for tissue engineering applications
Authors: Leong, Wenyan
Keywords: DRNTU::Engineering::Bioengineering
Issue Date: 2016
Source: Leong, W. (2016). Sacrificial gelatin microspheres for tissue engineering applications. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Tissue engineering, or the development of three-dimensional (3D) macroscopic biological tissues in vitro, have various important applications: as a medical intervention to replace lost or abnormal cells, tissues and organs through transplantation, as a self-regulating drug delivery vehicle, or as an in vitro study model or drug testing platform. The technology is highly anticipated to resolve the severe donor shortage and immune rejection issues of current replacement therapy: allogenic and xenogeneic transplantations. Furthermore, successful development of in vitro study and testing models not only decreases the use of animal models which pose deviation from human responses; it also can increase drug safety by providing crucial insights on drug dosing prior to pre- and clinical trials. However, oxygen diffusion constraints poses a bottleneck in development of macroscopic tissues constructs. We therefore propose to incorporate sacrificial gelatin microspheres in macroscopic hydrogel scaffolds as a versatile tissue engineering platform through two purposes, namely as a porogen for better permeability, and additionally as a cell delivery vehicle for non-anchorage dependent cell (non-ADC) types. Gelatin, being a temperature-responsive hydrogel, dissolves naturally when constructs are cultured for tissue development at physiological temperature; this is a simple and natural one-step strategy of creating cavities in a macroscopic construct.
DOI: 10.32657/10356/65947
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Theses

Files in This Item:
File Description SizeFormat 
LeongWenyan2016.pdf4.93 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Oct 15, 2021

Download(s) 20

Updated on Oct 15, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.