Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/66341
Title: Characterization of nanolayered coatings for advanced applications
Authors: Too, Andre Yun Hui
Keywords: DRNTU::Engineering
Issue Date: 2016
Abstract: Tool wear takes up a major portion of the costs in the machining industry. Nanolayered superlattice structure has great potential in the area of tool coatings due to their considerable strengthening mechanisms. The improved properties of the structure allows for cost reduction in tool replacements. This thesis illustrates the study of the microstructure through using different characterization techniques and providing information on the source of properties. Using the physical deposition method of cathodic arc evaporation, TiN/TiAlN coatings were deposited on cemented carbide substrates. The coatings were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and nano indentation. Microdroplets were found on the surface of the coating from SEM observations. The TEM data showed that period thickness was dependent on the deposition rotation speed. Both TEM and XRD methods identified TiN phase and {111} columnar grain growth texture perpendicular to the substrate without any noticeable defects. The appearance of spotty ring and broad peaks indicated that the coatings were polycrystalline. Higher rotation speed of 4rpm and above results in the stabilization of epitaxial superlattice structure. The superlattice structure is identified by the satellite peaks in the diffractogram. Peak hardness was found to be at 5rpm with competing strengthening factors of strain hardening and Hall-Petch relation.
URI: http://hdl.handle.net/10356/66341
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
TOO YUN HUI ANDRE FYP FINAL REPORT.pdf
  Restricted Access
1.6 MBAdobe PDFView/Open

Page view(s)

109
Updated on Nov 29, 2020

Download(s) 50

14
Updated on Nov 29, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.