Please use this identifier to cite or link to this item:
Title: g-C3N4/ZnO hybrid material as photocatalyst for photocatalytic CO2 reduction
Authors: Hu, Zhaoning
Keywords: DRNTU::Engineering::Materials::Composite materials
Issue Date: 2016
Abstract: The climate change resulting from the increasing emission of greenhouse gases in atmosphere has become a serious global environmental issue. Among total amount of the greenhouse gases, CO2 is the principal one and takes account of 76%. To overcome this issue, extensive research has been done upon a process of photocatalytic reduction of CO2 into hydrocarbon fuels. This photocatalytic reduction process has drawn lots of attention for it can decrease the amount of CO2 and generate solar fuels at the same time. ZnO has been widely studied as a photocatalyst for the CO2 photocatalytic reduction process, for it is abundant, nontoxic and stable. Among the various morphologies of ZnO, ZnO one-dimensional (1D) nanowire has high specific surface area and high charge carrier mobility, therefore it is a promising photocatalyst. Graphitic carbon nitride (g-C3N4) is an organic polymer which is under intensive study recently for CO2 photoreduction. It has favorable energy band to reduce CO2, nice CO2 fixation capability and able to harvest energy from visible light region. By adding g-C3N4 on ZnO nanowire as cocatalyst, a higher CO2 conversion efficiency is expected. In this study, a hybrid material is synthesized by growing g-C3N4 on ZnO nanowire following a solvothermal method. Characterizations including SEM, XRD, FT-IR, EDX and UV-visible spectroscopy have been done. The result shows a layer of tri-s-triazine structured g-C3N4 in spherical shape is grown on top of ZnO nanowire. The gas performance test results show this hybrid material has much larger CO and CH4 yield rate compared to clean ZnO nanowire and pure g-C3N4. Further study could concentrate on exploring the detailed mechanism in g-C3N4 synthesizing process, finding the optimal amount of g-C3N4 in the hybrid material and trying alternative g-C3N4 synthesizing method to grow g-C3N4 on other ZnO morphologies to get better photocatalytic CO2 reduction performance.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final year project report Hu Zhaoning.pdf
  Restricted Access
2.76 MBAdobe PDFView/Open

Page view(s)

Updated on Dec 4, 2020

Download(s) 50

Updated on Dec 4, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.