Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/66583
Title: Synthesis of N-doped SnO2 nanoparticles using CO2 laser pyrolysis, as anode materials in lithium ion batteries
Authors: Oon, Jianxiong
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2016
Abstract: In this project, we have used a CO2 laser pyrolysis method to synthesize SnO2 nanoparticles of varying concentrations of nitrogen doping. The nanoparticles were then studied for their electrochemical performances as the anode material for lithium ion batteries. The characterization of the nanoparticles was carried out using SEM, TEM, XRD and XPS. Cyclic voltammetry was conducted to determine the potentials at which redox reactions takes place during battery cycling. Galvanostatic cycling tests were carried out to investigate the specific capacity of the anode materials, as well as their cycling performances. It was found that doping SnO2 with nitrogen increases its specific capacity as an anode material, and that the capacity increases with increased dopant concentration. A possible reason reported in literature for this improved capacity is that N-doping increases the electrical conductivity of the SnO2 particles, which increases the rate of the charge transfer during redox reactions. Furthermore, it was found that N-doping improves the cycling stability of SnO2 anodes. Thus, we have shown N-doped SnO2 nanoparticles to be a viable new material that can be used as the anode in lithium ion batteries, for more energy intensive applications like renewable energy storage, or in electric vehicles.
URI: http://hdl.handle.net/10356/66583
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report Oon_Jianxiong_Final.pdf
  Restricted Access
2.02 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.