Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/66594
Title: Viscoelastic behaviour of hybrid carbon systems
Authors: Ngoh, Zhi Lin
Keywords: DRNTU::Engineering::Materials::Composite materials
DRNTU::Engineering::Electrical and electronic engineering::Nanoelectronics
DRNTU::Engineering::Nanotechnology
Issue Date: 2016
Abstract: Shape memory polymers (SMPs) are special materials capable of changing their shape based on the application of an external stimulus. However, SMPs do have their disadvantages such as poor thermal conductivity and poor electrical conductivity. Hence, much research has been done on methods to enhance the properties of SMPs such as the addition of nanofillers and fibers. These methods are limited by their non-uniform properties due to dispersion. In this report, investigation is conducted on a new class of intrinsically interconnected fillers: three-dimensional (3D) foams. These foams were produced via chemical vapour deposition (CVD) and characterised by the Energy Dispersive X-ray Spectroscopy mode of the Scanning Electron Microscope (SEM-EDX). Silver paint and cable lug were used to ensure a current flow from the direct current (DC) power supply and throughout the sample. With different compositions of 3D boron nitride (3D-BN) and 3D carbon (3D-C), the bent hybrid samples were able to unfold at different voltages and timings. The foams of different compositions were then connected together before being infused in SMP to produce a sample with components opening at different timings. This hybrid material can be used in the deployment of solar panels in satellites as the current solar panels are deployed with the use of dangerous explosive devices.
URI: http://hdl.handle.net/10356/66594
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Report_Ngoh_Zhi_Lin_U1221667D.pdf
  Restricted Access
2.11 MBAdobe PDFView/Open

Page view(s)

169
Updated on Jun 19, 2021

Download(s) 50

30
Updated on Jun 19, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.