Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/67366
Title: Burst failure of layered composite pipe
Authors: Ho, Kuan Lian
Keywords: DRNTU::Engineering
Issue Date: 2016
Abstract: Composite pressure vessels exhibit many advantages such as high strength, lightweight and excellent resistance to fatigue and corrosion. This makes them very popular for usage in various different industries such as aerospace, chemical engineering, and the transport of oil and gas. However, these pressure vessels experience very high internal pressures during their operation. As a result, the burst pressure analysis of them becomes vital for safety purposes. In the analysis, the pressure vessel is designed and modelled using the finite element software, ANSYS Parametric Design Language (APDL) 16.2. A simulation of the burst failure test is carried out and the burst pressure of the composite pipe is predicted based on the maximum stress criteria. Two parameters, the winding angle and stacking sequence of laminates, are analyzed in the project. Different configurations are investigated and the values are compared with experimental results. There is good agreement between model prediction and experimental data. Limitations are discussed and recommendations are suggested to further improve the investigations done on the burst pressure of composite pipes.
URI: http://hdl.handle.net/10356/67366
Schools: School of Mechanical and Aerospace Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report - Ho Kuan Lian (Submission to library).pdf
  Restricted Access
FYP Report1.48 MBAdobe PDFView/Open

Page view(s)

385
Updated on May 7, 2025

Download(s)

8
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.