Please use this identifier to cite or link to this item:
Title: Studies on antibacterial properties of cationic linear & cyclic polymers
Authors: Yee, David Chun Man
Keywords: DRNTU::Engineering::Bioengineering
Issue Date: 2016
Abstract: The pervasiveness of microbial infections and the development of resistance in bacteria against traditional antibiotics has created a need for an alternative solution. Synthetic materials such as cationic cyclic Poly 2-(dimethylamino)ethyl methacrylate copolymerized with methyl methacrylate or P(DMAEMA-co-MMA) are of interest due to the difficulty for bacteria to modify their entire cell membrane to develop resistance. This paper reports the successful synthesis of the cyclic and linear architectures of cationic P(DMAEMA+-co-MMA) and investigates and compares their respective antimicrobial properties. The two variants were polymerized utilizing ATRP and the cyclic structure was obtained via intra-chain ‘click’ cyclization. They were then characterized using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). The antimicrobial properties were tested using minimum inhibitory concentration (MIC) tests, live/dead assays and SEM to assess cell viability and effects that polymers have on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) cell membranes. The MIC tests show that cyclic structures have superior antimicrobial effects in comparison to linear structures. In the case of E. coli, cyclic structures required 78 µg/ml MIC as compared to 156 µg/ml for linear and 40 µg/ml vs 78 µg/ml for S. aureus. This could be attributed to the smaller hydrodynamic diameter of cyclic probably due to self-assembly which condenses the cationic charges and increases electrostatic interactions with bacteria cell walls.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP David Yee Chun Man Soft Copy.pdf
  Restricted Access
2.24 MBAdobe PDFView/Open

Page view(s)

Updated on Jun 24, 2021

Download(s) 50

Updated on Jun 24, 2021

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.