Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/68331
Title: Parameter study on performance of cooling air inlet in indoor environment
Authors: Siti Sunarti Bte Sugito
Keywords: DRNTU::Engineering
Issue Date: 2016
Abstract: Designing the heating, ventilating and air-conditioning (HVAC) to use energy more efficiently leads to lower costs of energy and at the same time, to maintain or improve the thermal comfort for occupants. Computational fluid dynamics (CFD) is able to simulate the expected flows in the rooms and buildings. It gives engineers the ability to predict the airflow within a room. The purpose of this study is to obtain an optimal airflow and temperature distribution of a mixing ventilated room. This study uses FLUENT to simulate the ventilation in simple structures and analyses the airflow patterns in the rooms. Many cases were simulated with varying parameters, namely delivered air velocity, position of inlet(s) and outlet(s) in each room as well as the presence of an average build standing occupant. A simple model using rectangular prisms with a heat flux of 140 W/m² represented an occupant. Temperature contours and airflow pattern were attained from the simulations and then analysed to observe the effects that varying parameters have on thermal comfort for an occupant. After the simulation, it was found that in the three-dimensional room, air inlet and outlet placed on the same wall have better thermal comfort. In addition, air inlet velocity of 1 m/s provides better thermal comfort as compared to a relatively high air velocity. This study enhanced the understanding of the interactions of supplied air velocity, position of inlet(s) and outlet(s) and presence of an occupant. The findings of this study can be applied to real-life situations.
URI: http://hdl.handle.net/10356/68331
Schools: School of Mechanical and Aerospace Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report FINAL.pdf
  Restricted Access
2.41 MBAdobe PDFView/Open

Page view(s)

224
Updated on May 19, 2024

Download(s)

10
Updated on May 19, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.