Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/68363
Title: Surface-enhanced raman spectroscopy for hemozoin detection
Authors: Liew, Vanessa Wan Qi
Keywords: DRNTU::Engineering
Issue Date: 2016
Abstract: Diagnosing malaria at the early stages of infection is very important as the disease, if left untreated, will quickly aggravate and become fatal upon manifestation of the first symptoms. For the detection of malaria, hemozoin, the by-product of the parasite’s digestion of erythrocytes, is often used as a biomarker. However, the low concentration of hemozoin during the initial stages of malaria infection makes early diagnosis difficult. Current diagnosis methods are constantly being improved and new techniques have been developed in order to detect malaria parasites quickly and accurately. Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the fastest and most accurate methods to detect early stage malaria parasites. In order to further enhance the Raman signals so that even hemozoin at low concentrations can be accurately detected, the utilization of common SERS-active substrates such as silver and gold colloids have been explored. In this paper, we will be presenting the use of two SERS-active substrates, namely Fe3O4@Ag and silver nanoparticles for the detection of hemozoin. We observe greater sensitivity and accuracy from the Fe3O4@Ag nanoparticles in comparison to the commonly used silver nanoparticles, which highlights its potential in aiding in the early diagnosis of malaria.
URI: http://hdl.handle.net/10356/68363
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Vanessa Liew Final Report [FYP 2016].pdf
  Restricted Access
Final Year Report11.34 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.