Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/68403
Title: To study yeast actin cytoskeleton involved in endocytosis and actin cable using optigenetics
Authors: Jebarani, Jebamony Jasmin
Keywords: DRNTU::Engineering::Bioengineering
Issue Date: 2016
Abstract: Actins in eukaryotic organisms plays a major role in cellular functions. They primarily appear in two major forms i.e., actin patch and actin cable. Actin patch plays an important role in endocytosis by providing the force that is needed for the plasma membrane invagination and engulfment of the cargo. Actin patches are nucleated by Arp2/3 complex which in turn is activated by Las17. On the other hand, actin cable plays vital role in transporting the cargo into and within the cell with the help of motor protein called Myo2. Actin cables are nucleated by formins called Bni1 and Bnr1. Optogenetics is a powerful tool in order to study the dynamics of a protein. It can control the expression of a gene at genetic level. Two light-sensitive proteins PhyB and PIF, when fused with fluorescent proteins and in the presence of PCB at 650nm, they form complex and the process can be reversed by shining 750nm. Here, I studied the role of four proteins viz., Las17, Bni1, Myo2 and Cmd1 in endocytosis and actin cable polymerization. Las17 and Bni1 plays a major role in endocytosis, actin cable polymerization and their inhibition affects the rate of endocytosis and the velocity of actin cable polymerization significantly. Myo2 and Cmd1 genes also play a significant role in endocytosis and actin cable polymerization.
URI: http://hdl.handle.net/10356/68403
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Theses

Files in This Item:
File Description SizeFormat 
JebamonyJasminJebarani16.pdf
  Restricted Access
Main report2.15 MBAdobe PDFView/Open

Page view(s)

114
Updated on Nov 26, 2020

Download(s) 20

12
Updated on Nov 26, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.