View Item 
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations (Submission before August 2018)
      • View Item
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations (Submission before August 2018)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      A first-principle study on lattice properties and atom positions of TiNiCu shape memory alloys

      Thumbnail
      View/Open
      PhD dissertation-Gou Liangliang (G1100986K).pdf (4.807Mb)
      Author
      Gou, Liangliang
      Date of Issue
      2016
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Since its discovery, TiNi-based shape memory alloys (SMAs) have attracted much attention and have spawned various innovative applications in the biomedical, aerospace, robotic and automotive industries. Besides high strength, ductility and biocompatibility, TiNi-based SMAs exhibit unique properties such as shape memory effect (SME) and superelasticity (SE) which are associated with reversible martensitic transformation (MT). However, even as TiNi-based SMAs have been discovered and used for many decades, a refined atomic-level understanding of MT is still lacking. With the rapid development of high performance computing, computational methods are playing an increasingly important role in materials research. By using computational methods, the martensite structures of TiNi-based SMAs at quantum level are explored in detail here. In the present work, the martensite crystal structures, electronic structures and atomic displacements of TiNi and TiNiCu alloys have been studied based on ab initio Density Functional Theory (DFT) calculations. The computational results are compared with previous experimental data and it is found that the equilibrium lattice constants are in good agreement with reported values. It is observed that for TiNiCu alloys with Cu content between 0 at% to 25 at%, and this Cu addition to TiNi, the martensite lattice parameters a and c and the monoclinic angle decrease, whereas the lattice parameter b increases. When Cu content reaches 20 at%, the monoclinic martensite crystal structure becomes unstable and an orthorhombic crystal structure is formed. However, when Cu content exceeds 25 at%, the changes of lattice parameters are insignificant, in which a decreases slightly while b and c increase slightly, and the stable martensite structure remains orthorhombic. Furthermore, as a result of Cu addition to TiNi, the electrons which escape from Ti atom increase linearly. Since each Cu atom attracts more electrons than Ni atom, fewer charge transfer from Ti to Ni has occurred compared to that in binary TiNi alloy. With increasing Cu content, the distance between two neighboring Ni/Cu atoms increases along the x-axis while two neighboring Ti atoms get closer, which is responsible for the rotation of the (100) plane, leading to a decrease in the monoclinic angle. The charge transfer between Ti and Ni/Cu atoms is suggested to be responsible for the observed atomic displacements. Since the displacements of both Ti and Ni/Cu atoms along the x-axis are progressive, there is no dramatic change in TiNiCu martensite crystal structures but the monoclinic angle decreases gradually until the orthorhombic structure is formed.
      Subject
      DRNTU::Engineering::Mechanical engineering
      DRNTU::Engineering::Aeronautical engineering
      Type
      Thesis
      Collections
      • Theses and Dissertations (Submission before August 2018)
      https://doi.org/10.32657/10356/68525
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG