Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/68767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYedida Surya Anjani-
dc.date.accessioned2016-06-01T02:12:36Z-
dc.date.available2016-06-01T02:12:36Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/10356/68767-
dc.description.abstractThe square patch antenna for Global Navigation Satellite System (GNSS) applications has been designed and studied. The antenna designed consists of a square patch with asymmetric comers in order to enhance the performance and improve the radiation pattern. The structure contains a single feed patch antenna which is implemented using the Rogers R04003 substrate. This antenna was designed using a single feed which reduces the cost of antenna. The proposed antenna was designed and simulated using the Computer Simulation Technology (CST) software. A detailed parametric study has been performed in order to better understand the antenna and to optimize each parameter to contribute to the performance. The design was fabricated and tested successfully. Measured results and simulated results of the design are then compared and they are in good agreement. Measured results produced a better gain for the antenna. The objective of this thesis is to analyse, design and fabricate microstrip square patch antenna used in GNSS applications. The measured gain obtained was 5.85 dBic. Return loss obtained in the design was -25 dB. The measured axial ratio < 3dB was obtained in almost all the directions. The axial ratio bandwidth was noted to be about 0.628% with central frequency 1.59 GHz. In conclusion, square patch microstrip antenna with asymmetric comers was designed and studied. The antenna has fulfilled the design specifications suitable for applications in GNSS antennas used in Ll band.en_US
dc.format.extent66 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen_US
dc.titleAntenna designs for satellite communication systemsen_US
dc.typeThesis
dc.contributor.supervisorArokiaswami Alphonesen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeMaster of Science (Communications Engineering)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
Yedida_Surya_Anjani_2014.pdf
  Restricted Access
Main report9.03 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.