Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/68791
Title: Correlation between hardness and tensile properties in selective electron beam melted Ti-6Al-4V
Authors: Lam, Bo Xiang
Keywords: DRNTU::Engineering::Materials::Material testing and characterization
Issue Date: 2016
Abstract: Electron beam melting (EBM), a technique of additive manufacturing (AM) has been increasingly studied for the fabrication of Ti-6Al-4V, which exhibits excellent mechanical properties favoured in aerospace, biomedical, marine and offshore applications. This report examines the hardness and strength properties of the alloy of multiple build thickness (10 mm and 20 mm), and establishes a linear correlation of yield strength to microhardness (σ_y vs H_V) and ultimate tensile strength to microhardness (σ_u vs H_V). In agreement with existing literature concerning anisotropic mechanical properties of EBM-fabricated Ti-6Al-4V, it has also been observed through test data that σ_y, σ_u and elongation differs between horizontal and vertical tensile axes. Anisotropy also extends to the modes of failure experienced, with ductile fracture occurring along the vertical tensile axis while brittle fracture happening for horizontally-stretched specimens.
URI: http://hdl.handle.net/10356/68791
Schools: School of Mechanical and Aerospace Engineering 
Research Centres: Singapore Centre for 3D Printing 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Lam Bo Xiang Report.pdf
  Restricted Access
Final report1.57 MBAdobe PDFView/Open

Page view(s)

291
Updated on Jun 13, 2024

Download(s) 50

22
Updated on Jun 13, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.