View Item 
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Computer modeling of solution X-ray scattering intensity for biomacromolecules

      Thumbnail
      View/Open
      TongDudu_amendedPhDThesis.pdf (4.360Mb)
      Author
      Tong, Dudu
      Date of Issue
      2016-12-01
      School
      School of Biological Sciences
      Abstract
      Increasing amounts of scattering data are obtained from high-throughput Solution X-ray scattering (SXS) experiments, including small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). There is a great demand of computational methods that can retrieve useful structural information or build structure model from these data. We have proposed substantial improvements to current methods that model the scattering profiles from protein structure at both atomistic scale and coarse-grained (CG) scale. In addition, our coarse-grained approach can be conveniently applied to structure optimization based on target scattering intensity. Firstly, a fast Fourier transform (FFT) based orientational average method is proposed to improve the computational efficiency of modeling scattering profiles using an atomistic protein structure representation, especially in case of considering explicit hydration water molecules. Comparing with the popular spherical average method, our method will become more efficient for systems with more than 3000 atoms. Moreover, the computational time of our FFT-based method remains nearly unchanged as the system size increases, making it suitable for very large protein complexes. CG representations are also widely used to improve the computational efficiency of theoretical scattering intensity computation. Given the importance of accuracy for CG approaches, we have proposed the electron density matching (EDM) method to parameterize the CG form factors. Comparing with the CG form factors used in literature, our EDM-derived ones result in better agreement to atomistic scattering intensities. Furthermore, the resulting CG xxform factors are shown to reproduce the experimental scattering profiles well by including the contribution of hydration layer and the correction of protein excluded volume. Finally, in order to perform structure modeling with our EDM-derived CG form factors, we have proposed an implicit hydration term to take account the contribution of the hydration layer scattering. This term is only related to the surface accessible solvent area (SASA) of protein atoms, making our formulation to evaluate scattering intensity analytically differentiable to the protein coordinates. The implicit hydration term is fitted to best reproduce the overall scattering intensity computed using explicit hydration water molecules. It is shown that the conjugate gradient structure optimization based on the target scattering intensity can produce final molecular structures very close to the known target structure.
      Subject
      DRNTU::Science
      Type
      Thesis
      Collections
      • Theses and Dissertations

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG