Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/69444
Title: Voltammetric detection, transformation and toxicity of engineered nanomaterials in aqueous environment and application of micro-/nanomotors for environmental remediation
Authors: Teo, Wei Zhe
Keywords: DRNTU::Science::Chemistry::Inorganic chemistry
Issue Date: 2017
Source: Teo, W. Z. (2016). Voltammetric detection, transformation and toxicity of engineered nanomaterials in aqueous environment and application of micro-/nanomotors for environmental remediation. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Nanotechnology has made remarkable progress in the 21st century owing to advances in instrumentations and techniques. Many consumer products are now incorporated with engineered nanomaterials that possess unique properties to enhance the product features. Limited regulations on the use of these potential pollutants led to rising concerns about the effect of engineered nanomaterials presence in the environment on the ecosystems and our health. Hence, this project examined the possibility of utilising voltammetric methods for accurate and efficient determination of engineered nanomaterials. Subsequently, the transformation of nanomaterials in different environmental waters were investigated and compared to find out how its interactions with the components in the water could affect its physiochemical properties, which in turn would influence its toxicity. Following that, cytotoxicity assessments of emerging engineered nanomaterials were performed to better understand their toxicity profiles they are introduced commercially. Besides engineered nanomaterials, micro- and nanometre scale devices which could undergo self-propulsion were successfully fabricated due to nanotechnology advances and they possess remarkable potential for various applications. Despite showing the capability to improve the rate of pollutant removal and degradation in proof-of-concept studies, there are challenges that impede its progression towards real-world application. Some of these challenges were addressed in this project through the replacement of platinum catalyst, large-scale and low cost fabrication of nanomotors, and studying the effect micromotors motion at macroscale level.
URI: https://hdl.handle.net/10356/69444
DOI: 10.32657/10356/69444
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
Thesis_Teo_Wei_Zhe.pdfTeo Wei Zhe PhD Thesis7.84 MBAdobe PDFThumbnail
View/Open

Page view(s) 50

364
Updated on Oct 19, 2021

Download(s) 10

354
Updated on Oct 19, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.