Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/6987
Title: Mechanics precision grinding brittle materials
Authors: Ngoi, Bryan Kok Ann.
Keywords: DRNTU::Engineering::Mechanical engineering::Mechanics and dynamics
Issue Date: 2000
Abstract: This project aims at gaining a better understanding of the mechanics of precision grinding of brittle materials. Indentation and scribing experiments on brittle materials were carried out to study crack initiation and propagation, brittle-ductile transition and material removal mechanism. The results of indentation and scribing tests show that brittle materials can be machined in a ductile manner when penetration depth is less than a critical value. Single point diamond turning of brittle materials, both as an alternative machining technique in its own right and as a model for certain parameters involved in grinding, was performed. Experimental results show that the properties of the workpiece material have a considerable influence on the critical depth of cut. Mirror surfaces are more prone to be generated on single crystal silicon than glasses. A smooth surface with a roughness in nano-scale was produced on silicon by properly controlling machining parameters. Tool wear mechanism in diamond cutting of glasses was investigated.
URI: http://hdl.handle.net/10356/6987
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Research Reports (Staff & Graduate Students)

Files in This Item:
File Description SizeFormat 
MPE-RESEARCH-REPORT_88.pdf
  Restricted Access
12.93 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.