Please use this identifier to cite or link to this item:
Title: Compact modeling for GaN HEMT devices
Authors: Binit Syamal
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2017
Source: Binit Syamal. (2017). Compact modeling for GaN HEMT devices. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: This thesis presents a compact model developed for generic High Electron Mobility Transistors (HEMTs). The model is based on unified regional modeling (URM) of the 2-dimensional electron gas (2-DEG) charge density, including the two lowest sub-bands of the triangular well in the strong inversion region, and extending to the moderate inversion and subthreshold regions in a single-piece formulation. The 2-DEG charge density model is adopted in the surface-potential-based current/charge model for conventional bulk MOSFETs, which makes it compatible and scalable for future III-V/Si co-integrated technologies. HEMT-specific features are also included, such as nonlinear source/drain access resistances, self-heating, and parallel-channel effects. Apart from dc current/charge modeling, a comprehensive scalable trapcharge model for the dc and pulsed I–V modeling is also developed for GaNbased HEMTs, which suffer from current-collapse effects. A surface-potentialbased model is proposed for interface traps, which is then adapted to the current model for the dc trap modeling. For the pulsed I–V modeling, a semiempirical approach is used for gate-lag and drain-lag conditions. The trap-charge model captures the effects of gate and drain quiescent biases as well as the stress time, and is validated with both TCAD and measurement data. The final model is coded in Verilog-A and compared with transient simulations from TCAD, demonstrating gate-lag effects under switching operations. The methodologies presented in this thesis provide a broad platform for designing next generation III-V on Si co-integrated ultra-large scale integration systems for highfrequency applications.
DOI: 10.32657/10356/70216
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
G1202670D-Thesis_BINIT SYAMAL.pdf4.05 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Jul 12, 2024

Download(s) 20

Updated on Jul 12, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.