Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/70448
Title: Exploring network on chip strategies on FPGA
Authors: Tan, Kai Xiong
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2017
Abstract: A configurable cycle-level Network-on-Chip (NoC) simulator is built in software framework. The software framework provides many NoC characteristic component that can be implemented in the NoC simulator. The software framework is written entirely in C++ programming language. Given the characteristics specification is defined, the NoC design can be implemented in the black box and tested for different scenarios and parameters. The software framework can be configured with varying combinations of processor and memory units. The NoC simulator can generate different traffic patterns and measure the average round-trip latency of a packet that is routed by the NoC design. The results of the simulation are displayed as a graph. The NoC design can also be converted into hardware design through Xilinx Vivado HLS (High-Level Synthesis) tool and implemented on a FPGA development board[1]. There are many different types of NoC implementations that have been published in the academic research. This report focus on real-time NoCs designs. It requires NoC to provide sufficient bandwidth and latency guarantees. “Statically scheduled TDM NoC” and “NOSTRUM” are implemented in the framework[2, 3]. The average round-trip latency is used for benchmarking the performance of the two NoC designs.
URI: http://hdl.handle.net/10356/70448
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
TAN_KAI_XIONG_FYP_REPORT.pdf
  Restricted Access
1.62 MBAdobe PDFView/Open

Page view(s)

111
checked on Sep 27, 2020

Download(s) 20

35
checked on Sep 27, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.